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THROUGH PERIODICALLY CONTACTING SURFACES 
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Abstract-An analogue computer was used to determine the effect of frequency and duration of contact 
per cycle on heat transfer through surfaces which are meeting and separating according to a regular cycle. 
The surfaces were of identical materials and perfect thermal contact and separation are assumed. 

The results show that at high frequencies, the loss of heat transfer rate arising from the interruption 
of heat flow due to separation of the surfaces, is small and less dependent on duration of contact per cycle 
than at low frequencies. The relationship between loss of heat transfer rate, frequency and duration of 

contact isshown by a single curve. 
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NOMRNCLATURE 

distance from contact plane to 
point B (Fig. 1) ; 
thermal conductance at contact 
plane ; 
distance from point A to contact 
plane (Fig. 1) ; 
thermal conductivity of hotter 
member ; 
thermal conductivity of colder 
member ; 
length ; 
dimensionless loss of heat transfer 
(equation 12) ; 
time ; 
temperature ; 
temperature at any point in colder 
member ; 
temperature at any point in hotter 
member ; 
temperature at contact plane with 
perfect thermal contact ; 
temperature at contact plane on 
colder member ; 
temperature at contact plane on 
hotter member ; 
respectively, instantaneous and 

mean temperature difference from 
steady-state permanent contact 
condition ; 

AT,, AT&, (TA - T,,) and (TA - Tk) see Fig. 

4(b) ; 

2 

distance ; 
heat flux - transfer rate per unit 
area ; 

a, thermal diffusivity ; 
z 0 time surfaces are in contact ; 

TOY time surfaces are separated ; 
f7 frequency ; 

4 depth below surface at which 
temperature fluctuation is neg- 
ligible ; 

F(y), g(y), function of y. 

1. INTRODUCTION 

THIS work is concerned with heat transfer 
through two surfaces which are undergoing 
a continuous, regular cycle of contact and 
separation. Practical examples of this, include 
that part of the heat transfer from the exhaust 
valve of an internal combustion engine which 
travels via the seating. While the valve is closed, 
the valve head is in contact with the valve seat 
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in the cylinder head and heat flows from the 
valve through the contacting surfaces. When the 
valve opens and the contact surfaces are sep- 
arated, heat transfer is severely curtailed. Other 
examples are the heat transfer between work- 
piece and die in repetitive hot metal deformation 
processes and between soldering iron and 
workpieces. 

In such cases, the heat transfer will depend 
upon the frequency and duration of contact, 
the overall temperature difference, thermal 
contact resistance at the contact surfaces, and 
the thermal properties of the materials in 
contact. A great deal of work has been done on 
thermal contact resistances of surfaces which 
are permanently in contact. References [l--3] 
contain valuable sources of information on 
both steady state and transient heat transfer. 

However, in this present report, one-dimen- 
sional heat flow only is considered. with the 
simplifying assumptions of perfect thermal 
contact at the surfaces (i.e. no thermal contact 
resistance) and perfect thermal separation when 
the surfaces were not in contact. 

The report describes an investigation using 
an analogue computer and forms part of a 
wider study by one of the authors (JRH). 
Current experimental work and further com- 
puter investigation now in progress will be 
reported later. 

2. STATEMENT OF PROBLEM 

2.1 General 
Consider two bars of material AH and CB 

with their axes in line as shown in Fig. l(a), 
and with one end H of one bar touching one 
end C of the other. If there were a steady, one- 
dimensional flow of heat along the axes of the 
bars i.e. no radial heat loss, then the temperature 
distribution would be as shown by line A, T,, B 
in Fig. l(b). 

If then the ends of the bars were separated 
by a small distance and the temperature at 
A and B were to remain unchanged, the steady 
heat flow through the system would be very 

FIG. 1. 

greatly reduced. Thus the temperature dis- 
tribution would be given by A, T, , T’,, and B. 
Clearly, under intermittent contact conditions, 
the temperature distribution will be between 
these two extremes, with the temperature near 
the contacting surfaces varying with time. 
Intermittent contact conditions will now be 
considered. 

2.2 Assumptions 
(i) The two bars are of equal cross-sectional 

area and have identical thermal properties. 
(ii) When the two faces are brought together, 

perfect thermal contact is made. Under these 
circumstances, the temperature at the contact 
plane will change instantaneously [4] to the 
mean value of the two surface temperatures 
which existed just before contact was made. 

(iii) When the surfaces are separated by a 
very small distance, the heat transfer rate is 
very small compared with that when the surfaces 
are in perfect thermal contact. For simplicity 
it is therefore assumed that when the surfaces 
are separated no heat transfer occurs. 

(iv) Temperatures T, and TB are known. In 
our case we stipulate that they are at a fixed 
value for all time. This enables the temperature 
gradient at A and B to be determined. Instan- 
taneous temperature distributions are shown 
in Fig. 2 for two cases ; one with the surfaces 
in contact (line AbT,dB) the other when the sur- 
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FIG. 3. Temperature/time relation at contact plane. 

faces are separated (line AbT,,T,&B). Figure 3 
shows the temperature-time relation at the 
contact plane of the hotter member. 

2.3 Basic equation 
Referring to Fig 2 the heat diffusion equation 

aT a2T 
at=” jg- ( > (1) 

applies on either side of the contact plane, at 
all times. 

Since the contact plane represents a dis- 
continuity, equation (1) must be solved in 
four parts, because (a) the two members may be 
different materials, (although in our case identi- 
cal materials are assumed) and (b) because of 
the two separate time periods ; viz. surfaces in 
contact and when they are separated. Using the 
nomenclature given in the List of Symbols 

and referring to Fig 2 the following boundary 
conditions arise. 

2.4 Boundary conditions 
1. TA and TB fixed at all times. 
2. At x = H and 0 -C t -c z, (i.e. during 

contact period) 

[Note that this is only true when assumption (1) 
Section 2.2 is made]. 

3. Atx = Hand z, < t < (z, + T,J 

2.5 Initial condition 

x, 

i.e. “steady state, surfaces permanently in 
contact” temperature distribution, chosen in 
order to reach the quasi-steady state rapidly. 

2.6 Heatflow 
The time-average heat flux is given by 

3. ANALOGUE 

3.1 The model 
For convenience it was assumed that the 

two members were of identical material so 
that the temperature distribution would be 
symmetrical about the contact plane. The heat 
flux will be unaffected by the location of the 
plane of contact, so long as the zone in its 
immediate region, where the temperature is 
fluctuating, does not encroach on to the ends 
where the temperature is fixed (see Appendix A). 
Only the hotter member was therefore con- 
sidered and it was divided into finite elements 
shown by the table of distances in Fig. 4(a). 
The steady state temperature distribution, with 
the end permanently in contact with the colder 
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(a) 0 

Distances 
46 

II 
O-I = 0.80 units 

2 o-2 = 0.08 units 
357 O-3 = 0.96 units 

I lime-average temperature 

O-4 = 0.97 units 
O-5 = 0.98 units 
O-6 q 0.99 units 
o-7 = I.00 units 

member is also shown in Fig. 4(b) by the line 
A7. The following material properties were 
assumed. 

Specific heat C = 
J 460 -_.._ 

kg degC 

Diffusivity a 

= 7550 kg 
m3 

= L = 5 x Io-ef 
PC S 

w 
Thermal conductivity k = 17.4 .~ 

m degC 

Specimen length O-7 = 0.04 m. 

3.2 Dimensional analysis 
Referring to the model Fig. 4 the heat transfer 

rate per unit cross-sectional area $, depends on 
the temperature difference (TA - T,) between 
the ends, the overall length 1, thermal conduc- 
tivity K, thermal diffusivity a, frequency of 
contact f and duration of contact per cycle 

(fLJ 

Furthermore, once I exceeds 6 and providing 
that the time-average heat flux is unchanged, 
an increase in 1 will only introduce an additional 
series thermal resistance into the system. Thus 
the thermal resistances of the system consists 
of two independent thermal resistances in series, 
R, and R, R, being the resistance under con- 
tinuous contact conditions due to the length 1 
of the conducting material (of unit cross- 
sectional area) and R, being due to the periodic 
interruption of the heat flow. 

Ri may also be represented by a length, I, of 
the same conducting material of unit cross- 
sectional area. 

Boundary condition 1, Section 2.4, implies It is desirable therefore to choose dimension- 
that ends ,4 and R of the two bars, Figs. 1 and less groups which reflect the independence of 

2, are in perfect thermal contact with heat 
reservoirs at temperatures T, and TB respectively, 
of infinite heat capacity and made of a substance 
whose thermal conductivity is infinite. 

If instead the bars were in perfect thermal 
contact at A and B with a system of finite 
properties then the temperature at A and B 
would fluctuate due to the periodic interruption 
of the heat flow at the contact plane. However, 
if the length of the bars is sufficiently large then 
the amplitude of temperature fluctuations at A 
and B would be very small once a “quasi- 
steady” state had been reached. If length 1 
equals 6 in equation (3) below, [5. 6j, 

and the temperature at the contact plane varies 
sinusoidally, the amplitude of temperature fluc- 
tuation at depth 6 from the contact plane is 
only 0.66 per cent of that at the contact plane. 

To test the accuracy of the analogue simula- 
tion, the amplitude of the temperature at 
stations 2 and 7 in the rod, Fig. 4(a), were 
compared. The ratio of these two amplitudes 
agreed closely with that computed from the 
exact solution of the heat diffusion equation (1) 
for a semi-infinite solid whose surface tempera- 
ture varies periodically with time [6]. 
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R. and R, isolating I in one of them. Note 

R; = F[f,-W]. - 
Notice that if the contact plane is situated 

at a distance less than 6 from the extreme ends 
A and B of the two bars (a case we have not 
considered), then the loss of heat flow is reduced, 
until when the contact plane is at the end, the 
loss of heat flow is half that when the contact 
plane is located at a distance greater than 6 
from the ends. 

Referring again to Fig. 4(b) which shows the 
quasi-steady state time-average temperature 
distribution when the surfaces are meeting 
and parting regularly, together with the dis- 
tribution under steady state surfaces per- 
manently in contact condition, it will be seen 
that the loss of heat flux due to periodic in- 
terruption of the heat flow is given by 

VT, - TJ 
4s - 4 = (x1 -x0) = 

KG - T2s) 

x2 - x0) 

This may be expressed non-dimensionally as 

li _ 
1 + li’ (5) 

whence 

IL 
Ii=1 _ L’ 

The relationship between the dimensionless 
parameters can be expressed in the form 

($) = 9 [($), (k)]: (7) 

But using equation (3) when (jl’/a) > 2.56x, 
Ii is independent of 1 and hence (flf/a) is 
independent of (f12/a) 

Hence _ft (-1 a 
= g(fz,) only. 

Thus, the number of significant dimensionless 
groups involved is two instead of three, with 
the advantage of saving a complete dimension 
of computation without loss of generality. 

In our experiment the values of (fll’/a) ranged 
from 4.64 to 3210. 

3.3 Finite-difference equations 
Equation (1) was written in finite-difference 

form. 
At any position on the model the temperature 

difference T between the “steady-state surfaces 
permanently in contact” condition and the tem- 
perature when the surfaces are meeting and 
parting regularly (and quasi-steady state is 
reached) is described by the equations below. 
Thus, referring to Fig. 4(b), AT, = TI - T,, etc. 
i.e. AT, is the difference between the actual 
temperature in the quasi-steady state and the 
temperature when the steady state surfaces 
permanently in contact is attained. Putting 
D E (d/dt) 

D(AT,) = 0.089 AT, - 0.098 AT, + MI089 AT, 

(9) 

in which AT, is zero since our boundary con- 
dition at position 0 is that the temperature 
remains fixed for all cases. 

D(AT,) = 0.488 AT, - 0.976 AT, 

+ 0.488 AT, 

D(AT,) = 6.95 AT4 - 7.82 AT, 

+ 0.87 AT2 

D(AT,) = 31.25 AT, - 62.5 AT4 

+ 31.25 AT3 

D(AT,) = 31*25AT, - 62.5AT, 

+ 31.25AT, 

D(AT,) = 31.25 AT7 - 62.5 ATs 

+ 31.25 AT,. 

When surfaces are in contact 

AT7 = 0. 

(10) 

(11) 

(121 

(13) 

(14) 

(15) 
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When surfaces are separated Output AT, was measured 

D(AT,) = 62.5AT, - 62.5AT, + 62.5. (16) recorder at all times so that 
duration of contact could be 

3.4 Circuitry 
typical trace of AT, is shown in 

with an U.V. 
frequency and 
determined (A 
Fig. 6.) 

Figure 5 shows the circuit diagram employed 
on a PACE analogue computer. 

Meeting and parting of the surfaces was simu- 4. PROCEDURE 

lated by the closing and opening of a switch 4.1 Temperature distribution 
whose frequency of operation and duration of 
closure could be varied. The switch was con- 
nected across amplifier 4 as shown in Fig. 5. 

Outputs AT, and AT, were measured with a 
digital voltmeter. At low frequencies of contact 
however, these outputs fluctuated cyclically 
and they were then measured with an U.V. 
recorder and time mean values determined. 

The computer was switched on with the 
variable-frequency switch permanently open. 
When steady conditions were reached, outputs 
AT,, AT2, . . AT, were measured with the 
digital voltmeter. Thus the temperature dis- 
tribution under “steady-state surfaces per- 
manently in contact” condition was obtained. 
At this condition, see Fig. 4(b), 

FIG. 5. 
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AT, = TA - T,, = AT,, 

AT, = TA - Tzs = AT,,. 

(17) The values obtained for L were in very close 

(18) 
agreement. Ii was calculated from equation (6) 
and used to evaluate the dimensionless group 

Outputs AT,, AT, and AT, were then ob- (f l~/a). 
served at various switching frequencies and These results are tabulated in Table 1 
durations of contact, once the quasi-steady Fig. 7 shows a plot of (flf/a) against (fi,), 
state was reached. After each series of tests 
the “steady-state surfaces permanently in con- 
tact” temperature distribution was checked. 6. DISCUSSION 

while 

It will be seen from the plot of (jJf/a) against 
5. RESULTS (fi,), Fig. 7, that all the points lie very close 

Referring to Fig. 4(b) the loss L was evaluated indeed to a single curve drawn among them, 
from equation (5) using mean values of AT. thus verifying the relationship given by equa- 
(viz. mi, m2), ATb and AT,,--see equations tion (8). For small values of loss L, it will be 
(17) and (18). Thus, seen from equation (6) that 

(19 
1 1 

L’I, (20) 

Frequency, Hz -+ 0.0145 

crd, L (f&d 

Table 1. 

0.073 0.18 0.585 

(.fZ, L (flti4 (frf) L (f?/4 ck) L UC/a) 

0.0828 0.51 5.05 0.0327 0.472 18.7 0.0372 0.343 15.7 oa612 0.170 7.86 
0.0204 0.325 1.08 om71 0.303 4.44 0061 0.272 8.05 0.105 0.127 4.06 
0403 0176 0,212 0,126 0.244 2.43 0.115 0191 3.22 0.167 0.0937 2.00 
0515 0.125 0.0945 0.182 0.205 1.56 0.18 0138 1.48 0.378 0.038 0.292 
0.667 0.072 0.0279 0.234 0.168 0.945 0.304 0.085 0.498 0,467 0.0275 0.149 
0786 0.034 0.00575 0.313 0.126 0.482 0.43 O-054 0.188 0.595 0.0163 0.0515 

0.509 0.067 0.122 0.50 0.042 0.111 0.672 0.0111 0.0234 
0.726 0.023 0.0129 0.612 0.0272 0.045 1 0.765 0.0067 0.0085 
0.778 0.016 000615 0.723 0.0159 0.0151 

0.844 om65 OX0247 

Frequency H, -+ 0.99 4.07 8.13 16.4 
(fi,) L (f C/4 (fs,) L U Cl4 (f7,) L (f G/4 (fi,) L (f e/d 

00446 0.154 10.5 0.0311 0.0895 12.6 0.0518 0.046 605 0.0525 0.0267 3.78 
O-0857 0.121 6.0 0.117 O-0461 3.04 0.1165 0.0284 2.23 0.137 0.0171 1.52 
01075 0.100 3.92 0.176 0.0340 1.62 0.223 0.0178 0.855 0.184 0.0149 1.15 
0.164 0.0752 2.09 0.265 o-0225 0.690 0.328 0.0123 0403 0.242 0.0120 0.740 
0.2 I4 0.0602 1.30 0.37 0.0156 0.327 0.43 0.00875 0.193 0.337 003872 0.389 
0.284 0.0438 0665 0.472 0.0109 0158 0.523 0.00586 00906 0.479 OQO494 0.124 
0.385 0.0295 0.293 0600 00X25 0.0515 0.596 oaO43 0.0485 0.579 om3 10 
0.496 0.0183 

0.0486 
0.110 0.730 0.0032 0.0134 0.688 0.00263 0.0181 0.683 0.00192 

0.585 0.0135 
0.0186 

0.0595 0.838 om137 0.00245 0.749 OaO18 OaO845 0.790 OQOO89 O+KM 
068 om79 0.0201 0.870 OWO6 OmO95 
0.772 0@0444 0.00630 
0.833 OQO301 0.00289 
O-895 Oocm99 0aOO311 
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FIG. 6. Typical trace of AT, 
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FIG. 7. 

whence L tends to a value given by 

(21) 

If the frequency of contact with a given 
system (of fixed 1 and a) is varied while (fr,) is 
maintained constant, then from equations (6) 

and (8), since L cannot be negative or exceed 
unity, 

giving 

(23) 

Thus, as f increases so L falls, and at suffi- 
ciently large values of (fi,) i.e. small p, loss L of 
heat flow brought about by periodic interruption 
of heat flow will be small. 

It should be emphasised that the analogue 
does not solve the partial differential equation 
(1) but only the finite-difference approximations 
to it, equations (9H16); which includes the 
boundary condition that the temperature at the 
hottest end of the bar is fixed i.e. AT, = 0, 
equation (9). In practical cases the amplitude 
of temperature fluctuation within the rod will 
decay exponentially [6] with distance from 
the contact planes. At the lowest frequency 
investigated, 0.0145 Hz the amplitude at the 
hottest end of the bar would only amount to 
2.2 per cent of that at the contact plane, thus 
approximating to the boundary condition 
closely. 

Since a non-uniform division of the model 
Fig. 4(a) was employed it is difficult to estimate 
the error due to the finite-difference approxima- 
tion. However, comparison of these results 
with some obtained using the division shown in 
Fig. 8 shows them to be in close agreement. 

It is emphasised that the data obtained is 
applicable only to the case where both hot and 
cold members are of identical material and 
perfect contact and separation occurs at the 
plane of contact. Cases where the members are 
of different materials and where thermal contact 
resistance is present are being studied currently 
and will be dealt with in a later report. 

Clearly the results suggest that in practical 
cases, at suffkiently high values of (.fi,) and 
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Not lo scale APPENDIX 

Hot end 
I 

0 2 345 

Consider Fig. 9, which shows the temperature 
distribution in the case where the hot and cold 
members are made of identical material of 
thermal conductivity k, 

o- I = 0.8 units 

0- 2 = 0.96 units 

o- 3 = 0,992 units 

0- 4 = 0.9984 units 

o- 5= I.ounlts 

FIG. 8. Earlier division of model. 

frequency thermal contact resistance at the 
contact plane will exert a more significant effect 
on heat flow than the periodic interruption at 
the contact plane. 
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(i) their lengths are not equal 
(ii) a thermal contact resistance (l/h) exists 

at the plane of contact between hot and cold 
members. This introduces a discontinuity at 
the plane of contact. 

I Hot member 

A 

L I 
O/- H l c de-- 

FIG. 9 

(iii) the hot and cold members are per- 
manently in contact. 

Clearly the heat flux 4 is given by 

k(T, - G,) = W%, - TB) 
4= H 

C 

= m, - TJ,), 
which on eliminating TO, and TO, gives 

(25) 

’ = 
TA - TB 

> (l/k)(H + C) + (l/h) * 
(26) 

Thus, for given end temperatures TA and TB, 
overall length of the system (H + C) and 
contact resistance (l/h), the heat flux 4 is 
independent of its position between the ends 
A and B. 

Consider now the case where there is perfect 
Tramfizr p. 102. McGraw-Hill, New York (1959). thermal contact between the hot and cold 
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members when they are brought together and 
no heat transfer between the members when 
they are separated. 

Figure 10 shows the temperature distribution 
when the members are meeting and parting 
at the plane of contact at a given frequency 
and ratio of contact time: periodic time (fr,) 
and when quasi-steady conditions are reached. 

The temperature in the immediate region of 
the plane of contact will vary with time but at 
some depth 6 below the surface, the fluctuation 
of temperature will be negligible [SJ. The o ’ 

I _.-___ 
~,.~~~~~~~~_.___~__~ mpm_l_ c ~~~~_ 

shaded areas in Fig. 10 are bounded by the 
maximum and minimum temperature reached FIG. 10 

during a cycle of contact and separation of the 
two members. The time average temperature tuates, thus invalidating our boundary condition 
distribution however is given by line of fixed temperatures at A and II. However, if 
AD7’,‘,,,,To,VEB. This is of the same form as we stipulated that the temperature at A and B 
in Fig. 10 and hence again the heat flux is were allowed to fluctuate but with a fixed 
independent of the position of the contact time-average value, the heat flux 4 would 
plane between the ends A and B provided of remain independent of the position of the 
course, that it is not positioned so close to contact plane over the entire distance between 
A or B that the temperature at A and B flue- A and B. 

ETUDE ANALOGIQUE DU TRANSPORT DE CHALEUR A TRAVERS DES SURFACES 
PfiRIODIQUEMENT EN CONTACT 

Rbum&Un calculateur analogique a iit& employ6 pour dtterminer l’effet de la frCquence et de la dur&e 
de contact par cycle sur le transport de chaleur g travers des surfaces qui se rejoignent et se s&parent selon 
un cycle rkgulier. Les surfaces Btaient constituCes par des matbriaux identiques et l’on a suppod que le 
contact et la separation thermique ttaient parfaits. 

Les resultats montrent qu’& des frtquences Blevtes, le perte de vitesse de transfert de chaleur provenant 
de l’interruption du flux de chaleur, due a la separation des surfaces, est faible et d&pendant moins de la 
durbe de contact par cycle qu’aux basses Wquences. La relation entre la diminution de la vitesse de trans- 

fert de chaleur, la frtquence et la durCe de contact est montr6e par une courbe unique. 

EINE ANALOGIE-UNTERSUCHUNG DES WARMEDURCHGANGS DURCH PERIODISCH 
SICH BERUHRENDE FL;ICHEN 

Zusammenfassung-Mit Hilfe eines Analogrechners wurde der Einfluss von Frequenz und Dauer des 
Kontakts pro Periode auf den WBrmetibergang durch Fliichen untersucht, die in regelmlssiger Folge 
zusammengefiihrt und wieder getrennt werden. 

Die Flachen waren aud gleichem Material, es wurde vollsttidiger thermischer Kontakt und vollstiindlge 
Trennung vorausgesetzt. 

Die Ergebnisse zeigen, dass bei hohen Frequenzen die Abnahme des Wgrmeiibergangs bei der Unter- 
brechnung des Wtimestroms durch Trennung der Fllchen klein bleibt und die Kontaktdauer von gerin- 
gerem Einfluss ist als bei kleinen Frequenzen. Der Zusammenhang zwischen Abnahme des WLrmeiiber- 

gangs. Frequent und Kontaktdauer wird durch eine einzige Kurve dargestellt. 

AHAJIOrOROE BCC~IEfiOBAHBE TEHaOOEMEH_4 lIEPE3 IIEPMO;I~‘IECfCL~ 
HOHTAKTHbIE HOBEPXHOCTB 

AHHoTal(n$%-C IlOMOLI(bM aHkWOPOBOti BbW'ICJIHTeJlbHOi MXUHKbI OnpemnnnOC% R=W=iHHe 

gaCTOTbIIIAJIHTenbHOCTMHOHTaKTaBTeYeHaeqllKnaHanepeHOCTennasepe3 RCTpe’xamwxeCR 

M paCxo~FIIIJI4ecH B COOTBeTCTBAA C pe.TIyJIFlpHbIM IIYIKJIOM nOBepxHOCTH. nOBepXHOCTH 



HEAT TRANSFER THROUGH PERIODICALLY CONTACTING SURFACES 183 

Ei3l'OTOBJleHbl II3 Ei~eTWIHOrO MaTepHaAa M IIPHHRTO, 'IT0 TeIIfiOB0i-i KOHTaKT Ii pa3AeJIeHI4e 

Kgeanbfme. 

Pe3yJibTaTL-J IIOKa3bIBaIOT, 9TO IIpH BbICOKEiX 9aCTOTaX YMeHblUeHkie TeIIJIOBOl'O IIOTOKP, 

BO3HKKaIo~eeK3-3a~a3~e~eH~~~OBe~XHOCTe~,HeBe~IlKOMMeHb~e3aBCATOT~~KTeJIbHOCTEl 

KOHTaKTa B TeqeHIle l.(mKJla,'IeM lIpPi HIlSKElX 'IaCTOTaX.COOTHOlUeHMe MemAy YMeHbIUeHHeM 

TeWJIOBOrO IIOTOKa, gaCTOTOt II AJIHTeJlbHOCTbIO KOHTaKTa IIpegCTaBJIeHO OAHOti KPEIBOif. 


